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I. SUMMARY

We implemented a parallelized solver for a 2048 game
using OpenMP with various parallel strategies and performed
speedup tests for 300 simulation steps on the PSC machine
using a different number of threads. Our final solver can
reach about 10x speedup than the sequential solver.

II. BACKGROUND

2048 game (1) is a sliding tile puzzle game on a 4 x
4 board, and the objective of the game is to combine the
numbered tiles to create higher tiles as large as possible.

The workload of the 2048 solver (2) is computation-
intensive. The prediction steps include sliding the board in
four directions, generating new ”2” and ”4” tiles at the empty
positions, computing heuristics scores for current positions,
and deciding the optimal next move. It creates at most 4
(four directions) * 2 (”2” or ”4”) * 15 (empty positions) =
120 possible searching paths for each step, and the algorithm
recursively evaluates the scores for 8 levels, which means we
need to go through a huge search space.

Fig. 1. 2048 solver moving the board

Fig. 2. 2048 solver generating tiles

Our implementation is based on the 2048 solver repo
(3) implemented in C++ by nneonneo, and parallelizes the
simulation steps using the OpenMP task feature. The board is
stored as the type of uint64 to perform fast board operations,
and the heuristic scores are float type calculated by the
monotonicity and smoothness of the board state.

Since the simulation steps only depend on the previous
board state, it can potentially benefit from parallelization.
For each recursive call, we pass the board state by value
so that all threads can simulate and evaluate the boards
independently. The only synchronization needed here is to
collect and compare the results after all threads are done.

Fig. 3. 2048 solver search process.

III. APPROACH

The original implementation (3) presents the board simply
as a uint64, which minimizes the computational cost for
board operations. Therefore, we focused on parallelizing the
main evaluation algorithm and kept the data structure and
board operators the same.

We used the original implementation as our sequential
benchmark, estimating the execution time for 300 moves, and
implemented our parallel version in C++, which launches a
new OpenMP task when we are going to move the board and
generate new tiles, running on the multi-core PSC machine.

In the following sections, we are going to introduce three
approaches we have implemented.

A. Approach 1

Our first approach is a naive strategy that only parallelizes
the most-outer loop. This is the most intuitive way for this
specific workflow, which starts at the beginning board state
and independently calculates the scores for four different
directions. It gives us a good insight into how well the
program can perform on a 4-core machine.

Although this approach suffered from significant workload
imbalance, it still reached a 2x speedup than the serial
benchmark.

To enable high-count threads acceleration, we need to
parallelize the recursive evaluation steps further.



B. Approach 2

The number of tasks grows exponentially regarding the
simulation depth. In the worst case, there are 4∗2∗15 = 120
(sliding four directions, generating 2 and 4 at every empty
positions) recursive calls per level. Thus, for depth = 8, it
needs 4 ∗ 1208 ≈ 1.72 ∗ 1017 tasks to simulate in move.

In this approach, we implemented a dynamic strategy. We
kept tracking the number of tasks to avoid creating too many
tasks. We maintained a global variable task count to store the
tasks we have launched. The ideal number of tasks should
be slightly more than cores count, so we set a threshold of 2
* num cores to determine whether we should launch a new
task or not.

This approach minimizes the negative effect of producing
too many threads and works excellently on 2 to 16 threads.
However, the cost of synchronizing starts to dominate the
execution time when the number of threads increases.

C. Approach 3

The last approach we have implemented is static strategy.
Our ultimate goal is to utilize high-count cores to accelerate
our program as much as possible, and reduce all other
synchronization costs. Therefore, we decided to determine
the number of tasks statically.

We only parallelize the first depth of the simulation, and it
will create at most 480 threads. Since synchronization costs
are very expensive when running on 128 cores, we store
the results in an array to reduce the stall effect. There is no
critical modification between threads. The parent threads will
collect and compute the scores sequentially. This approach
improves the performance on 64 and 128 cores.

D. Optimization

While we were testing this approach, the performance
became worse when the thread count went higher than 64.
So we did some optimizations to fix this problem.

First of all, we allocated all threads at the beginning and
reused the same threads throughout the whole simulating
process, instead of reallocating threads for each move. Sec-
ondly, since the cache invalidation is extremely slow for
high-count cores, we added paddings to the result array to
prevent false sharing. In addition, we use the ”untied” flags
for OpenMP tasks, which enables any thread to resume a
suspended thread.

Since the workload of each thread varies a lot, and extra
costs affect the performance significantly. Those optimization
make the execution time faster and more stable.

IV. RESULTS

In this section, we will present the experiment results we
conducted on the PSC machine. We measure the time usage
of the first 300 moves, running on [2, 4, 8, 16, 32, 64,
128] cores, and use the sequential version as our benchmark.
We will only focus on approaches 2 and 3 since the naive
approach did not fully utilize the cores.

Fig. 4. execution time v.s. speedup v.s. # of threads for dynamic strategy

Fig. 5. execution time v.s. speedup v.s. # of threads for static strategy

A. Dynamic Strategy

Our first experiment measures the speedup with different
numbers of cores for the parallel approach 2 (dynamic
strategy). The result of the experiment is shown in Fig.
4. The approach performs well when running on 16 cores
machines, which can reach almost 4x speedup, and scale
excellent from 2 cores to 8 cores. This is because we
limited the number of threads by 2 * core counts to utilize
the threads better while avoiding extra costs for launching
threads. However, the speedup dramatically decreases for 32,
64, and 128 threads. As mentioned in the previous section,
the communication costs dominated the running time and
decelerated the simulation steps. Currently, OpenMP does
not provide any API for controlling the number of tasks, and
the synchronization costs are inevitable, if they do support
this feature.

B. Static Strategy

This experiment measures the speedup with different num-
bers of cores for the parallel approach 3 (static strategy). The
result of the experiment is shown in Fig. 5. The approach
creates a fixed number of threads, regardless of the number
of cores. Unsurprisingly, the performance for 2, 4, 8, and
16 cores are slower than approach 2. However, it breaks the
”high-core” limit when running on 32, 64, and 128 cores.
It reaches 8x speedup on 32 cores and scales well from 2
cores to 32 cores. It is worth noting that the performance
drops for 64 and 128 cores. It is probably because of the



Fig. 6. execution time v.s. speedup v.s. # of threads for optimized static
strategy

extra communication costs for allocating threads, invalidating
cache lines, and context switches.

C. Optimized Static Strategy

This experiment measures the speedup with different
numbers of cores for the optimized static strategy, which
reusing the threads and adding padding to the array. The
result of the experiment is shown in Fig. 6. This version
reduces unnecessary initialization and communication costs.
It performs best among our approaches and reaches 10x
speedup on 128 cores, which means the program actually
benefits from the high-count cores.

V. CONCLUSION

In this project, we implemented different ways to paral-
lelize the 2048 solver, including naive, dynamic, and static
strategies. We then analyzed the performance bottlenecks,
and further optimized our static approach.

VI. LIST OF WORK

This project is implemented by Wei-Ting Tang (weitingt)
alone.
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